Introduction to Proteomics

Åsa Wheelock, Ph.D. Division of Respiratory Medicine & Karolinska Biomics Center <u>asa.wheelock@ki.se</u>

In: Systems Biology and the Omics Cascade, Karolinska Institutet, June 9-13, 2008 Focus of course: Tools for data analysis

Your analysis is no better than data you have collected...

The goals of this proteomics overview:

- Understand possibilities & limitations
- Pros and cons of different method
- Sources of variance in proteomics
- Take advantage of proteomics core facilities
- Perform proteomics collaborations
- Write a short research proposal in proteomics

Proteomics publications in Pubmed

Why Proteins?!?

- Business end of the cell
- Detailed information with limited efforts
 As compared to metabolomics
- Relatively robust methods available

Proteomics Methodology

- No "protein PCR"
 - -4 nucleotides vs 20+ amino acids
 - -Post-translational modifications (PTM)
- **3 MAIN PROTEOMICS PLATFORMS**
- Gel based methods
- Shotgun methods (mass spec-based) "chromatography-based", "gel-free"
- Array based (antibody based)

Gel based: 2-Dimensional Electrophoresis

Klose, J. 1975. Humangenetic 26, 231-43 O'Farrel, P. 1975. J. Biol.Chem, 250, 4007-21

Image acquisition Sample Tray Gel **Emitted Light** Fiber Optic Collector Laser Light Laser Mirror (488 nm) 530 nm PMT 610 nm Filters

Image acquisition using fluorescent scanner

Quantitative image analysis

Pixel intensity => 3rd dimension Spot volume = protein quantity

- 1. Detect spots
- 2. Match spots across gels
- 3. Quantify spot volumes

Protein identification

Trypsin digestion

Unrecovered peptides adsorbed to gei

Extracted peptides ready for analysis

⇒ Mass spectrometry (MALDI-TOF/TOF)

⇒ DATABASE SEARCH => IDENTIFICATION (Swiss-prot, EnSemble) (statistical probability)

Protein Identification

Protein

Trypsine digestion

MS analysis

DTHKSEIAHRFK DLGEEHFKGLVL IAFSQYLQQCPF DEHVKLVNELTE FAKTCVADESHA GCEKSLHTLFGD ELCKVASLRET

Protein database

Virtual digest

Peptide mass mapping

MS analysis=> peptide masses

DLGEEHF<mark>K</mark>

database search

LHTLFGD<mark>R</mark>

MS/MS analysis=> sequence information

Statistical matching

DTHKSEIAHRFK DLGEEHFKGLVL IAFSQYLQQCPF DEHVKLVNELTE FAKTCVADESHA GEKSLHTLFGRE LCKVASLRET

Homology search Validate statistical hit ¹¹

Shotgun vs. Gel-based proteomics

Adapted from Patterson and Aebersold, Nature Genetics 2003, 33:311-23. Fig. 3

Semi-quantitative proteomics

Both 2DE and MS-based methods <u>NOT</u> quantitative by nature

Co-separation: 2 samples => ratios Tags => Semi-quantitative proteomics

Semi-quantitative proteomics

Both 2DE and MS-based methods <u>NOT</u> quantitative by nature

Co-separation: 2 samples => ratios Tags => Semi-quantitative proteomics

Pooled internal standard + 2-3 samples => Relative quantification

Internal Standards in 2DE: DIGE

Proteomics in Pubmed

Differential labelling opens up new possibilities

Cysteine oxidative states

 Identify peptides on plasma membrane surface

Cellular re-localization

2D or not 2D?

Gel-based methods: 2-D electrophoresis

+ soluble proteins

+ post-translational modifications

Post-translational modifications "Spot trains" Intact proteins

2D or not 2D?

Gel-based methods: 2-D electrophoresis + soluble proteins + post-translational modifications - technical variance, time consuming **MS-based (Gel-free) methods: ICAT, iTRAQ** + membrane proteins + low abundance proteins

Extremes of physiochemical properties: Peptides

- Charge
 - pl range from 3-12
- Size
 - Mw range of 5 500,000 kDa
- Hydrophobicity
 - membrane proteins

2D or not 2D?

Gel-based methods: 2-D electrophoresis + soluble proteins + post-translational modifications - technical variance, time consuming **MS-based (Gel-free) methods: ICAT, iTRAQ** + membrane proteins + low abundance proteins - expensive, data intense

Shotgun approcahes and gelbased approaches complementary

No "true" proteomics technique yet

DYNAMIC RANGE

Post-translational Modifications (PTMs) - 400 reported PTMs

Variance in 2DE

- BIOLOGICAL VARIANCE
- Experimental variance
 - Pre-fractionation, isolation & labelling of proteins
 - Protein staining
- Technical variance
 - Gel-to-gel variation in 2DE
 - Image acquisition (scanner)
- Post-experimental variance
 - Software-induced variance
 - User dependant variance

Variance in 2DE

- BIOLOGICAL VARIANCE
- Experimental variance
 - Pre-fractionation, isolation & labelling of proteins
 - Protein staining
- Technical variance
 - Gel-to-gel variation in 2DE
 - Image acquisition (scanner)
- Post-experimental variance
 - Software-induced variance
 - User dependant variance

Remember that variance adds up: Multiple-step method is not your friend...

Variance in 2DE

- BIOLOGICAL VARIANCE
- Experimental variance
 - Pre-fractionation, isolation & labelling of proteins
 - Protein staining
- Technical variance
 - Gel-to-gel variation in 2DE
 - Image acquisition (scanner)
- Post-experimental variance
 - Software-induced variance
 - User dependant variance

Technical variance in 2DE

Tools to reduce variance

Technical variance

Internal standard:
 –DIGE

Software algorithms:
 Background subtraction
 Normalization

Dynamic range of scanner

16 bit pixel resolution ($2^{16} \sim 65,000 \sim 10^5$) Make sure you are using the entire range!

Variance in 2DE

- BIOLOGICAL VARIANCE
- Experimental variance
 - Pre-fractionation, isolation & labelling of proteins
 - Protein staining
- Technical variance
 - Gel-to-gel variation in 2DE
 - Image acquisition (scanner)
- Post-experimental variance
 - Software-induced variance
 - User dependant variance

2DE analysis software

- Main purpose: match and quantify spots
- Normalization: reduce gel-to-gel variation
- Background subtraction:
 - Reduce background noise
 - Increase signal/noise ratio
 - Increase sensitivity

Global Background Subtraction

PDQuest: Floating/Rolling Ball

Software induced variance

PDQuest

PG200

Software variance up to 30% of technical variance

Applications of proteomics BIOMARKER DISCOVERY

Biomarker of disease & susceptibility

CLINICAL APPLICATIONS

- Pharmaceutical target identification
- Improved diagnostics

MECHANISTIC STUDIES

- Protein-protein interactions
- Protein adduction /Altered protein expression
- Hypothesis generation: avoid local "maxima"
- Systems Biology

Proteomics in the future

- Improved sensitivity
 - Currently: scratching the surface
 - laser capture microdissection
- Protein microarrays
 - Antibody arrays (e.g. for cytokines)
 - Tissue microarrays (Peter Nilsson, Friday)
- In vivo subcellular localization assays
- Protein amplicifation method?
 - -i.e. "protein-PCR"

Proteomics in the NEAR future...

Focus on **INTERPRETING** data, <u>not</u> on **ACQUIRING** data.

Pathway Analysis

- Integrate data from omics cascade
- Integrate heatmap with biological pathways

Preview of coming attractions... Kedarrage File Edit View Tools Configure Help

Te trahydrofuran diols

Take home messages...

...keep your variance down and your dynamic range up!

...keep your false positives down, and your power up!